
Journal of Lie Theory
Volume 17 (2007) 99–114
c© 2007 Heldermann Verlag

Leibniz Algebras, Lie Racks, and Digroups

Michael K. Kinyon

Communicated by Jimmie D. Lawson

Abstract. The “coquecigrue” problem for Leibniz algebras is that of finding
an appropriate generalization of Lie’s third theorem, that is, of finding a gener-
alization of the notion of group such that Leibniz algebras are the corresponding
tangent algebra structures. The difficulty is determining exactly what proper-
ties this generalization should have. Here we show that Lie racks, smooth left
distributive structures, have Leibniz algebra structures on their tangent spaces
at certain distinguished points. One way of producing racks is by conjugation
in digroups, a generalization of group which is essentially due to Loday. Using
semigroup theory, we show that every digroup is a product of a group and a triv-
ial digroup. We partially solve the coquecigrue problem by showing that to each
Leibniz algebra that splits over an ideal containing its ideal generated by squares,
there exists a special type of Lie digroup with tangent algebra isomorphic to the
given Leibniz algebra. The general coquecigrue problem remains open, but Lie
racks seem to be a promising direction.
Mathematics Subject Classification: 17A32, 20M99, 22A30;
Key Words and Phrases: Leibniz algebra, Lie rack, digroup.

1. Introduction

A Leibniz algebra (g, [·, ·]) is a vector space g together with a bilinear mapping
[·, ·] : g× g → g satisfying the derivation form of the Jacobi identity

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] (1)

for all X, Y, Z ∈ g . Every Lie algebra is a Leibniz algebra, but the bracket in a
Leibniz algebra need not be skew-symmetric.

One of the outstanding problems in the theory of Leibniz algebras is that
of finding an appropriate generalization of Lie’s “third theorem”, which associates
a (local) Lie group to any (real or complex) Lie algebra. The most challenging
aspect of the problem is to determine what should be the correct generalization
of the notion of group. So little is known about what properties these group-like
objects should have that Loday dubbed them “coquecigrues” [15]. The author
and A. Weinstein made an attempt to understand coquecigrues in [9] by using
smooth, nonassociative multiplications defined on reductive homogeneous spaces
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that are associated to Leibniz algebras. However, as already discussed in that
paper, the objects studied therein are not a satisfactory solution to the coquecigrue
problem, because in the case where the given Leibniz algebra is a Lie algebra, the
object associated to it in [9] is not the Lie group. At the very least, the correct
generalization of Lie’s third theorem to Leibniz algebras should reduce to the usual
theorem for Lie algebras; that is, the coquecigrue of a Lie algebra should be a Lie
group.

This paper offers a different partial solution to the coquecigrue problem.
By dissecting one of the proofs that the tangent space at the unit element of a
Lie group is a Lie algebra, we find that the essential properties leading to the
Jacobi identity are not so much encoded in the group multiplication as they are
in conjugation. This is hardly an original observation. For instance, recently it
has been made in a categorical context by Crans, who is interested in the similar
problem of the relationship between Lie 2-groups and Lie 2-algebras [3]. In any
case, the observation that conjugation is what induces the Jacobi identity leads us
to consider Lie racks, that is, (pointed) manifolds with a smooth, left distributive
binary operation. We propose that whatever the correct notion of coquecigrue
might turn out to be, the Leibniz algebra of a coquecigrue should be obtained from
differentiating a Lie rack structure associated to the coquecigrue. Our primary
example (Example 3.3) of a nongroup Lie rack is a product of a Lie group and a
vector space upon which the group acts; we call these linear Lie racks.

The notion of Lie rack itself might seem to be a reasonable candidate for
coquecigrue, but this is premature, because it turns out that every Leibniz algebra
can be realized as the tangent Leibniz algebra of some rack, but in the Lie algebra
case, the rack in question is not the conjugation rack of the Lie group. However,
there are other rack structures that are more promising, at least in the split case.
In Theorem 3.5, we show that the Leibniz algebra g associated to a linear Lie
rack splits over its ideal E generated by squares, that is, there exists a Lie algebra
h ⊂ g such that g = E ⊕ h , a direct sum of vector spaces. In this case, g is the
demisemidirect product of E with h in the sense of [9]. Conversely, if g is a split
Leibniz algebra, then there exists a linear Lie rack with g as its tangent Leibniz
algebra.

There are algebraic structures that are intermediate between racks and
groups considered as racks. One such structure, which is suggested by the work
of Loday [16], is the notion of digroup. We will give an axiomatic description of
digroups in §4, but essentially, they are sets G with two binary operations ` and
a so that, in the jargon of semigroup theory [2], (G,`) is a right group, (G,a)
is a left group, and there are some compatibility conditions ensuring that the sets
of unit elements of the two structures coincide. Using basic semigroup theory, we
show that every digroup is a product of a group and a “trivial” digroup.

Conjugation in groups generalizes to digroups so that every digroup has an
associated rack structure. In the smooth case, then, every Lie digroup G (that is,
digroup in which ` and a are smooth operations with respect to an underlying
manifold structure) has an associated Leibniz algebra g = T1G , where 1 is a
distinguished unit element. The rack structure associated to a linear digroup is a
linear Lie rack, and conversely, every linear Lie rack is induced by a linear digroup
structure. As a corollary, we obtain Lie’s third theorem for split Leibniz algebras:
to each split Leibniz algebra g , there exists a Lie digroup G such that T1G is a
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Leibniz algebra isomorphic to g .

Within a span of a year, the notion of digroup discussed in this paper has
been introduced independently three times. The first appearance of the definition
and a discussion of basic properties seems to have been that of the author [8] in
a conference talk on 4 August 2004. Next appeared a preprint of K. Liu [12],
and then another by R. Felipe [5]. In each case, not only were the definitions of
digroup nearly identical, but so was the choice of the term “digroup” to denote
the concept. This is not as surprising as it might seem: the definition of dimonoid
(which probably should have been called disemigroup) and the “di-” terminology
are already contained in the work of J. Loday [16]. Digroups are just dimonoids
in which every element is invertible in an appropriate sense. Thus one should
really see the notion of digroup as being already implicit in Loday’s work. The
observation that a digroup is a right group and a left group with a common set of
unit elements seems to be new to this paper. Additional recent papers on digroups
and/or coquecigrues are [6, 13, 18], and Liu has published a monograph [14], which
also contains a wider notion of digroup than that studied here.

Worth mentioning is the interesting work of T. Datuashvili [4], who has
approached the coquecigrue problem from the point of view of generalizing the
Magnus-Witt functor from the category of groups to the category of Lie algebras.

I would like to thank Alan Weinstein for introducing me to the problem
of “integrating” Leibniz algebras. After witnessing [8], he made a couple of key
remarks which greatly helped to simplify the presentation of the notion of digroup.
He also made very useful comments on an early version of this paper. I would
also like to thank Yvette Kosmann-Schwarzbach and Dmitri Roytenberg for their
encouragement.

2. Leibniz algebras

This brief section summarizes basic facts about Leibniz algebras, and defines split
Leibniz algebras. In this paper, the underlying field of any vector space will be
the real or complex numbers. The problem of “integrating” Leibniz algebras over
other fields to an appropriate generalization of the notion of algebraic group is an
interesting one, but will not be addressed here.

Let g be a Leibniz algebra as defined in §1. If we define the left multiplica-
tion map by ad(X)Y := [X, Y ] , then the Jacobi identity (1) can be summarized
by the assertion that ad(X) ∈ Der(g) for all X ∈ g , where Der(g) denotes the
Lie algebra of derivations of g .

It should be noted the convention adopted here for the Jacobi identity (1)
defines what is known as a left Leibniz algebra. The opposite algebra of a left
Leibniz algebra is a right Leibniz algebra, in which the right multiplication maps
are derivations. It is somewhat more common in the literature to work with right
Leibniz algebras; however, left Leibniz algebras seem a bit closer to the spirit of
the coquecigrue problem, as will be seen in §3. Leibniz algebras are also known as
Loday algebras [10], because they were introduced and popularized by Loday [15].

Denote by S := 〈[x, x] : x ∈ g〉 the ideal of g generated by all squares.
Then S is the minimal ideal with respect to the property that h := g/S is a Lie
algebra. The quotient mapping π : g → h is a homomorphism of Leibniz algebras,
that is, π([X, Y ]) = [π(X), π(Y )] for all X, Y ∈ g . It is also a morphism of left
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h-modules, that is, π(ξX) = [ξ, π(X)] for all X ∈ g , ξ ∈ h .

Conversely, Let h be a Lie algebra, g an h-module, and π : g → h an
h-module morphism. Assume without loss that π is an epimorphism, and define
the structure of a Leibniz algebra on g by [X,Y ] := π(X)Y . Then π becomes an
epimorphism of Leibniz algebras. To view Leibniz algebras in this way is to regard
them as being Lie algebra objects in the infinitesimal tensor category of linear
maps; see [17] for further details. Incidentally, this particular view of Leibniz
algebras may be the key to relating the study of Leibniz algebras to Crans’ study
of Lie 2-algebras, since the latter can be viewed in a similar fashion [3].

Let g be a Leibniz algebra, and let E ⊂ g be an ideal such that S ⊆ E ⊆
ker(ad). Then g splits over E if there exists a Lie subalgebra h ⊂ g such that
g = E ⊕ h , a direct sum of vector spaces. In this case, for u, v ∈ E , X,Y ∈ h , we
have

[u+X, v + Y ] = Xv + [X, Y ], (2)

since E ∈ ker(ad), that is, [u, ·] ≡ 0 for all u ∈ E .

Conversely, given a Lie algebra h and an h-module V , set g := V ⊕ g , and
define a bracket on g by (2) for u, v ∈ V , X, Y ∈ h . Then (g, [·, ·]) is a Leibniz
algebra called the demisemidirect product of V and h [9]. The ideal of g generated
by squares is S ∼= hV . The kernel of ad is ker(ad) = V ⊕ {X ∈ h : Xv = 0 ∀v ∈
V } ∩Z(h), where Z(h) denotes the center of h . Finally, V ∼= V ⊕ {0} is an ideal
such that S ⊆ V ⊆ ker(ad). We have g/V ∼= h , and so g splits over V .

We summarize this discussion as follows.

Theorem 2.1. Let g be a Leibniz algebra, and let E be an ideal of g such that
S ⊆ E ⊆ ker(ad). Then g splits over E if and only if g is a demisemidirect
product of E with a Lie algebra h.

Note that if a Leibniz algebra g splits over S itself with complementary Lie
subalgebra h , then by (2), h · S = S . Conversely, if g = V ⊕h is a demisemidirect
product and if h · V = V , then S ∼= V .

A Leibniz algebra may split over more than one ideal.

Example 2.2. Let V := Rn and on g := V ⊕ gl(V )⊕ gl(V ), define

[u+X + Y, v + U + V ] := Y v + [X,U ] + [Y, V ]

for u, v ∈ V , X, Y, U, V ∈ gl(V ). Then S ∼= V and ker(ad) = V ⊕ {aI : a ∈
R} ⊕ {0} , where I ∈ gl(V ) denotes the identity matrix. Here g splits over S
with complement gl(V )⊕ gl(V ), and g also splits over ker(ad) with complement
sl(V )⊕ gl(V ).

If g is a Lie algebra which does not split over its center Z(g), then g

is obviously a Leibniz algebra that splits (trivially) over its ideal generated by
squares, but not over ker(ad) = ker(ad) = Z(g). On the other hand, a Leibniz
algebra may split over ker(ad) without splitting over its ideal generated by squares.

Example 2.3. Let V := R2 , let h := {
(

0 a
0 0

)
: a ∈ R} , and let g = V ⊕ h be

the demisemidirect product. Then ker(ad) ∼= V and S ∼= R ·
(

1
0

)
. While g splits

over ker(ad), it is easy to check that g does not split over S .
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To conclude this section, we will briefly discuss the notion of dialgebra [16],
as it motivates the notion of digroup. The commutator bracket in an associative
algebra gives the underlying vector space the structure of a Lie algebra. One
way to generalize this idea so as to obtain Leibniz algebra brackets that are not
skew-symmetric is to use two different associative algebra products.

Definition 2.4. A dialgebra (A,`,a) is a vector space A together with two
associative, bilinear mappings `,a: A × A → A satisfying the following axioms.
For all x, y, z ∈ A ,

(D1) x ` (y a z) = (x ` y) a z

(D2) x a (y ` z) = x a (y a z)

(D3) (x a y) ` z = (x ` y) ` z

The axioms (D1)-(D3) will appear again in §4, and so we postpone a detailed
discussion until then.

Given a dialgebra (A,`,a), defining a bracket by [x, y] := x ` y − y a x
turns (A, [·, ·]) into a Leibniz algebra. Note that our use of ` and a in this bracket
is the opposite of that of Loday. This convention matches our preference for left
Leibniz algebras instead of right Leibniz algebras.

Example 2.5. Let V be a vector space. On A := V ⊕ End(V ), define

(u,X) ` (v, Y ) := (Xv,XY )

(u,X) a (v, Y ) := (0, XY )

Then the associated Leibniz algebra (A, [·, ·]) is exactly the demisemidirect product
of V with the Lie algebra gl(V ) = End(V ).

3. Lie racks

Pointed racks are algebraic structures that encapsulate some of the properties of
group conjugation.

Definition 3.1. A pointed rack (Q, ◦, 1) is a set Q with a binary operation ◦
and a distinguished element 1 ∈ Q such that the following axioms are satisfied.

1. x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z) (left distributivity)

2. For each a, b ∈ Q , there exists a unique x ∈ Q such that a ◦ x = b

3. 1 ◦ x = x and x ◦ 1 = 1 for all x ∈ Q .

For a magma (Q, ◦), let Aut(Q) denote the set of permutations of Q
preserving ◦ , that is, a permutation ψ of Q is in Aut(Q) if and only if ψ(x ◦ y) =
ψ(x) ◦ ψ(y) for all x, y ∈ Q . If we denote the left translations in a rack (Q, ◦) by
φ(x)y := x ◦ y , then the left distributive axiom simply asserts that φ(x) ∈ Aut(Q)
for all x ∈ Q .
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In a group G , the operation x ◦ y := xyx−1 makes (G, ◦, 1) into a pointed
rack, where 1 is the identity element of G . Left (or right) distributive structures
have been studied under an overabundance of names in the literature. “Rack”
seems to be the most fashionable name in the case where each φ(x) is bijective.
A good survey of racks and more specialized structures, such as quandles and
crossed sets, can be found in [1]. In general, racks need not be pointed, but all
racks considered in this paper are.

We are primarily interested in racks in which the algebraic structure is com-
patible with an underlying manifold structure. In this paper, “smooth manifold”
means C∞ -smooth.

Definition 3.2. A Lie rack (Q, ◦, 1) is a smooth manifold Q with the structure
of a pointed rack such that the rack operation ◦ : Q×Q→ Q is a smooth mapping.

The conjugation operation in a Lie group makes it into a Lie rack. Here is
another example.

Example 3.3. Let H be a Lie group and let V be an H -module. On Q :=
V ×H , define a binary operation ◦ by

(u,A) ◦ (v,B) := (Av,ABA−1) (3)

for all u, v ∈ V , A,B ∈ H . Setting 1 = (0, 1), we have that (Q, ◦,1) is a Lie
rack, which we call a linear Lie rack.

By defining a Lie rack to be pointed, we do not wish to suggest that
smooth unpointed racks are of no interest. Smooth left distributive structures have
certainly been studied in the literature; see the bibliography of [20]. However, our
Lie racks Q have a distinguished tangent space T1Q with an algebraic structure
of its own. Our approach to that structure is modeled upon one of the routes to
the Lie algebra of a Lie group. In this approach, the idea is to differentiate the
conjugation operation to obtain the adjoint representation of the group, and then
differentiate again to obtain a mapping which is used to define the Lie bracket,
and which then becomes the adjoint representation of the Lie algebra.

Suppose now that Q is a Lie rack. For each x ∈ Q , φ(x)1 = 1, and
so we may apply the tangent functor T1 to φ(x) : Q → Q to obtain a linear
mapping Φ(x) := T1φ(x) : T1Q→ T1Q . Since each φ(x) is invertible, we have each
Φ(x) ∈ GL(T1Q). Now the mapping Φ : Q→ GL(T1Q) satisfies Φ(1) = I , where
I ∈ GL(T1Q) is the identity mapping. Thus we may differentiate again to obtain
a mapping ad : T1Q → gl(T1Q). Here we are making the usual identification of
the tangent space at the identity element of GL(V ) for a vector space V with the
general linear Lie algebra gl(V ). Now we set

[X, Y ] := ad(X)Y (4)

for all X,Y ∈ T1Q .

In terms of the left multiplications φ(x), the left distributive property of
racks can be expressed by the equation

φ(x)φ(y)z = φ(φ(x)y)φ(x)z. (5)
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We differentiate (5) at 1 ∈ Q , first with respect to z and then with respect to y
to obtain

Φ(x)[Y, Z] = [Φ(x)Y,Φ(x)Z] (6)

for all x ∈ Q , Y, Z ∈ T1Q . This expresses the condition that for each x ∈ Q ,
Φ(x) ∈ Aut(T1Q, [·, ·]).

Next we differentiate (6) at 1 to get

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] (7)

for all X, Y, Z ∈ T1Q .

Summarizing, we have shown the following.

Theorem 3.4. Let (Q, ◦, 1) be a Lie rack, and let g = T1Q. Then there exists
a bilinear mapping [·, ·] : g× g → g such that

1. (g, [·, ·]) is a Leibniz algebra,

2. For each x ∈ Q, the tangent mapping Φ(x) = T1φ(x) is an automorphism
of (g, [·, ·]),

3. if ad : g → gl(g) is defined by X 7→ ad(X) = (Y 7→ [X, Y ]), then ad = T1Φ.

We will refer to the Leibniz algebra structure on the tangent space at the
distinguished element 1 of a Lie rack as being the tangent Leibniz algebra of the
rack. To illustrate Theorem 3.4, let us explicitly describe the tangent Leibniz
algebra structure for the linear Lie rack (Q, ◦,1) of Example 3.3. Let h be the
Lie algebra of the Lie group H . Then we may identify T1Q with g := V ⊕ h . For
u ∈ V , A ∈ H , the tangent mapping Φ(u,A) = T1φ(u,A) : g → g is given by

Φ(u,A)(v +X) = Av + Ad(A)X (8)

for all v ∈ V , X ∈ h , where Ad : H → GL(h) is the adjoint representation.
Differentiating this, we find that

[u+X, v + Y ] = Xv + [X, Y ] (9)

for all u, v ∈ V , X,Y ∈ h . Comparing with (2), we see that the tangent Leibniz
algebra for the Lie rack Q = V ×H of Example 3.3 is exactly the demisemidirect
product of V with h .

So far, we have shown one direction of the following.

Theorem 3.5. Let H be a Lie group with Lie algebra h, let V be an H -module,
and let (Q, ◦,1) be the linear Lie rack defined by (3), where Q = V × H . Then
the tangent Leibniz algebra of Q is the demisemidirect product g = V ⊕ h with
bracket given by (9).

Conversely, let g be a split Leibniz algebra. Then there exists a linear Lie
rack Q with tangent Leibniz algebra isomorphic to g.
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Proof. Only the second assertion remains to be shown. Let g = E ⊕ h be a
splitting of g , where E is an ideal with S ⊆ E ⊆ ker(ad) and h is a Lie subalgebra.
Recall that g is then a demisemidirect product of E with h . Let H be a connected
Lie group with Lie algebra h . Set Q = E ×H , and note that we may identity g

with T1Q . Give Q the Lie rack structure (Q, ◦,1) where ◦ is given by (3). Then
the result follows from the discussion preceding the statement of the theorem.

It is natural to speculate that Lie racks themselves provide an answer to
the coquecigrue problem. That this is not the case is evidenced by the observation
that every Leibniz algebra is the tangent Leibniz algebra of a rack. Indeed, let g

be a Leibniz algebra with ad(X)Y := [X, Y ] . On g , define

X ◦ Y := exp ad(X)Y

Then
X ◦ (Y ◦ Z) = exp ad(X) exp ad(Y )Z

= exp(exp ad(X)ad(Y )) exp ad(X)Z
= exp(ad(exp ad(X)Y )) exp ad(X)Z
= (X ◦ Y ) ◦ (X ◦ Z)

Also X ◦ 0 = 0 and 0 ◦X = X . Thus (g, ◦) is a Lie rack. It is easy to check that
the tangent Leibniz algebra is g itself.

In case g is a Lie algebra, the rack structure (g, ◦) was first noted by Fenn
and Rourke [7]. Since the coquecigrue of a Lie algebra is supposed to be a Lie
group, this rack does not meet a basic requirement for being the coquecigrue of a
Leibniz algebra.

In the Lie algebra case, it is natural to ask how (g, ◦) is related to the
associated conjugation rack of a Lie group G for g . The relationship can be seen
in the Lie group structure on the tangent bundle TG = g o G . Conjugation in
TG is given by

(X, a) ◦ (Y, b) = (X + Ad(a)Y − Ad(a−1)X, aba−1)

for X, Y ∈ g , a, b ∈ G . Now consider the graph {(X, expX) : X ∈ g} of the
exponential mapping. This graph is not, in general, a subgroup of TG . However,
it is a subrack; from the above we have

(X, expX) ◦ (Y, expY ) = (Ad(expX)Y, expX expY exp(−X))
= (Ad(expX)Y, exp(Ad(expX)Y ))

This subrack is obviously just a copy of (g, ◦). In fact, it is the graph of the rack
homomorphism (g, ◦) → (Aut(g), ◦);X 7→ Ad(expX).

Since Lie racks are not a sufficient answer to the coquecigrue problem, more
structure must be needed which induces an associated rack structure. In the next
section, we study a candidate for this additional structure.

4. Digroups

Just as dialgebras with two distinct associative operations lead to nonLie Leibniz
algebras through a generalized notion of bracket, so will we obtain Lie racks that
are not groups via a generalized notion of conjugation.
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Definition 4.1. A disemigroup (G,`,a) is a set G together with two binary
operations ` and a satisfying the following axioms. For all x, y, z ∈ G ,

(G1) (G,`) and (G,a) are semigroups

(G2) x ` (y a z) = (x ` y) a z

(G3) x a (y ` z) = x a (y a z)

(G4) (x a y) ` z = (x ` y) ` z

A disemigroup is a dimonoid if

(G5) ∃1 ∈ G such that 1 ` x = x a 1 = x for all x ∈ G .

A dimonoid is a digroup if

(G6) ∀x ∈ G, ∃x−1 ∈ G such that x ` x−1 = x−1 a x = 1.

Loday used the term “dimonoid” to refer to what we have called a disemi-
group [16]. We have made a slight change in the terminology to be more consistent
with standard usage in semigroup theory. An element e in a disemigroup is called
a bar-unit if it satisfies e ` x = x a e = x for all x . Axiom (G5) asserts that
a bar-unit exists in a dimonoid, but it is not assumed to be unique. Note that a
digroup is a group if and only if ` = a if and only if 1 is the unique bar-unit.
As noted in §1, the notion of digroup has recently been introduced independently
three times [5, 8, 12], but one should really think of it as being already implicit in
Loday’s work.

We will use the associativity of the operations ` and a as well as axiom
(G2) to drop parentheses from expressions whenever possible. Thus, for instance,
x ` y a z is unambiguous by (G2).

J.D. Phillips has recently shown that in the presence of axioms (G5) and
(G6), axioms (G3) and (G4) are redundant, and in fact, axioms (G1), (G2), (G5),
(G6) are an independent set of axioms for digroups [19].

Example 4.2. Let H be a group and M a set on which H acts on the left.
Suppose there exists a fixed point e ∈ M , that is, he = e for all h ∈ H , and
suppose that H acts transitively on M\{e} . On G := M ×H , define

(u, h) ` (v, k) = (hv, hk) (10)

(u, h) a (v, k) = (u, hk) (11)

for all u, v ∈M , h, k ∈ H . Then (G,`,a) is a digroup with distinguished bar-unit
(e, 1). The inverse of (u, h) is (e, h−1).

We will see later that, in a sense to be made more precise, every digroup is
of the type described in Example 4.2.

Understanding the definition of digroup becomes easier if we draw upon
a bit of semigroup theory. Let (G,`,a) be a digroup. The semigroup (G,`) is
presumed to have a left neutral element 1 and right inverses x−1 for each x ∈ G .
Semigroups with this additional structure are called right groups [2]. (This is not
how right groups are usually defined in the semigroup literature, but is instead a
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characterization.) Similarly, (G,a), which has a right neutral element 1 and left
inverses x−1 for each x ∈ G , is a left group.

We collect some basic facts about right groups in the next result; see, e.g.,
[2].

Lemma 4.3. Let (G,`) be a right group, let J := {x−1 : x ∈ G}, and let
E := {e : e ` x = x}

1. x−1 ` x ` y = x ` x−1 ` y = y for all x, y ∈ G.

2. x ` 1 = (x−1)−1 for all x ∈ G.

3. ((x−1)−1)−1 = x−1 for all x ∈ G.

4. (x ` y)−1 = y−1 ` x−1 for all x, y ∈ G.

5. J is a group and E is a right zero semigroup.

6. G→ J ;x 7→ (x−1)−1 is an epimorphism of right groups with kernel E .

7. G→ E;x 7→ x−1 ` x is an epimorphism of right groups with kernel J .

8. G = J ` E is isomorphic to the direct sum of J and E .

The set E is sometimes called the “halo” in papers on dialgebras [16].

When we need results about left groups corresponding to those in Lemma
4.3 in the sequel, we will simply refer to the “left group dual” of the appropriate
assertion.

Now let (G,`,a) be a digroup. In order to interpret the digroup axioms,
we introduce mappings on G as follows:

L`(x)y = R`(y)x := x ` y and La(x)y = Ra(y)x := x a y

Since (G,`) and (G,a) are semigroups, we have the usual relations

L`(x)R`(y) = R`(y)L`(x) La(x)Ra(y) = Ra(y)La(x)
L`(x ` y) = L`(x)L`(y) and La(x a y) = La(x)La(y)
R`(x ` y) = R`(y)R`(x) Ra(x a y) = Ra(y)Ra(x)

If we let GG denote the semigroup of all mappings on G , then x 7→ L`(x)
and x 7→ R`(x) are, respectively, a homomorphism and an antihomomorphism
from (G,`) to GG . Also, x 7→ La(x) and x 7→ Ra(x) are, respectively, a
homomorphism and an antihomomorphism from (G,a) to GG . In particular,
L`(1) = R`(1) = La(1) = Ra(1) = I . Since (G,`) is a right group, the image
of L` lies in G! , the symmetric group on G . In particular, by Lemma 4.3(1),
L`(x

−1) = L`(x)
−1 . Similarly, since (G,a) is a left group, the image of Ra lies in

G! , and Ra(x
−1) = Ra(x)

−1 .

Turning to the compatibility axioms, (G2) reads

L`(x)Ra(z) = R`(z)La(x)



Kinyon 109

Axioms (G3) and (G4) read, respectively

Ra(y a z) = Ra(y ` z) and L`(x ` y) = L`(x ` y).

So the mapping L` : G → G! , in addition to being a homomorphism from
(G,`) to G! , is also a homomorphism from (G,a) to G! . Similarly, Ra : G →
G! , in addition to being an antihomomorphism from (G,a) to G! is also an
antihomomorphism from (G,`) to G! .

Liu [12] has shown that the subset L`(G)×La(G) ⊂ G!×G! has a natural
digroup structure containing as a subdigroup a copy of (G,`,a). He interprets
this to be a type of Cayley representation of digroups. Here we will obtain a
different representation using basic semigroup theory.

The kernel of the homomorphism L` : G→ G! is the set of all bar-units of
G , that is, the set

E := {e ∈ G : e ` x = x a e = x ∀x ∈ G}. (12)

Actually, the fact that the right group and left group structures in a digroup share
a bar-unit is enough to ensure that they share all bar-units.

Lemma 4.4. Let (G,`,a) be a dimonoid. Then e ∈ G is a left neutral element
for (G,`) if and only if it is a right neutral element of (G,a).

Proof. Suppose e ∈ G satisfies e ` x = x for all x ∈ G . Then 1 = e ` e−1 =
e−1 . Thus 1 = 1 a e , and so x a e = (x a 1) a e = x a 1 = x . The other direction
is similar.

Lemma 4.5. Let (G,`,a) be a digroup.

1. x ` 1 = 1 a x for all x ∈ G.

2. (x ` y)−1 = y−1 ` x−1 = y−1 a x−1 = (x a y)−1 for all x, y ∈ G.

3. J := {x−1 : x ∈ G} is a group in which ` = a.

4. G→ J ;x 7→ (x−1)−1 is an epimorphism of digroups with kernel E .

Proof. For (1): This follows from Lemma 4.3(2) and its corresponding left
group dual.

For (2): by (G3) and (G4), the inverses of x a y and x ` y coincide, so the
result follows from Lemma 4.3(4) and its left group dual.

For (3): this follows from (2), Lemma 4.3(5) and its left group dual.

For (4): By Lemma 4.4, the left neutral elements for ` coincide with the
right neutral elements for a , and so the desired result follows from Lemma 4.3(6)
and its left group dual.
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Incidentally, Lemma 4.5(1) shows that one of Liu’s axioms for a digroup is
redundant [12].

We are now ready to examine the structure of digroups in more detail.
If (G,`,a) is a digroup with E the set of all bar-units and J the group of all
inverses, then by Lemma 4.3(8), G = J ` E is isomorphic to the direct sum of
J and the right zero semigroup E . On the other hand, by the left group dual of
Lemma 4.3(8), G = E a J is isomorphic to the direct sum of J and the left zero
semigroup E . However, the projection of an element onto E with respect to `
may not agree with the projection onto E with respect to a .

Example 4.6. For the digroup G = M × H of Example 4.2, we have E =
M × {1} and J = {e} × H . For u ∈ M , h ∈ H , (u, h) = (e, h) ` (h−1u, 1) =
(u, 1) a (e, h). Thus the projection of (u, h) onto E with respect to ` is (h−1u, 1),
while the projection with respect to a is (u, 1).

The appropriate generalization of conjugation to digroups is the following.
For x in a digroup G , define

x ◦ y := x ` y a x−1 (13)

Lemma 4.7. Let G be a digroup, let ◦ be defined by (13), let E be the set of
all bar-units, and let J be the group of all inverses. The following hold.

1. x ◦ (y ◦ z) = (x ` y) ◦ z = (x a y) ◦ z for all x, y, z ∈ G.

2. 1 ◦ x = x and x ◦ 1 = 1 for all x ∈ G.

3. x ◦ u ∈ E for all x ∈ G, u ∈ E .

4. J acts on E via ◦.

Proof. For (1), we use Lemma 4.5(2):

x ` (y ` z a y−1) a x−1 = (x ` y) ` z a (y−1 a x−1)

= (x ` y) ` z a (x ` y)−1 = (x ` y) ◦ z.

On the other hand, by (G3) and (G4),

(x ` y) ◦ z = L`(x ` y)Ra(x ` y)−1z = L`(x a y)Ra(x a y)−1z

= (x a y) ◦ z.

For (2): 1 ◦ x = 1 ` x a 1 = x and x ◦ 1 = (x ` 1) a x−1 = (1 a x) a x−1 = 1, by
Lemma 4.5(1).

For (3): By (G4), for x ∈ G , u ∈ E , we have (x ◦ u) ` y = (x ` u a x−1) `
y = x ` u ` x−1 ` y = x ` x−1 ` y = 1 ` y = y . Similarly (or by Lemma 4.4),
y a (x ◦ u) = y . Thus x ◦ u ∈ E .

Finally, (4) follows from (1), (2), (3), and Lemma 4.5(3).

We now turn to this section’s main result, which shows that every digroup
has the form of Example 4.2.
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Theorem 4.8. Let (G,`,a) be a digroup with E ⊂ G the set of bar-units and
J ≤ G the group of inverses. Then G is isomorphic to the digroup (E × J,`,a)
where ` and a are defined by

(u, h) ` (v, k) = (h ◦ v, h ` k) (14)

(u, h) a (v, k) = (u, h a k) (15)

Proof. As noted above, G = E a J is isomorphic as a left group to (E × J,a)
where a is defined by (15). Denote the isomorphism by θ : E × J → E a
J ; (u, h) 7→ u a h . Then

θ(u, h) ` θ(v, k) = (u a h) ` (v a k) = u ` h ` v a k
= (h ◦ v) a h a k = (h ◦ v) a (h ` k) = θ((u, h) ` (v, k))

using (14)

5. Digroups as racks and their Leibniz algebras

We have already seen at the end of the last section how conjugation in groups
generalizes to digroups. Now we draw further connections between this and racks.

Lemma 5.1. Let G be a digroup and let ◦ be defined by (13). The following
properties hold for all x, y, z ∈ G.

1. x ` y = (x ◦ y) ` x

2. x ◦ (y ` z) = (x ◦ y) ` (x ◦ z)

3. x ◦ (y a z) = (x ◦ y) a (x ◦ z)

4. x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z)

Proof. For (1), we use (G3):

x ` y = (x ` y a x−1) a x = (x ` y a x−1) ` x = (x ◦ y) ` x.

For (2), we use (G3):

x ` (y ` z) a x−1 = x ` y ` x−1 ` x ` z a x−1 = (x ` y ` x−1) ` (x ◦ z)
= (x ` y a x−1) ` (x ◦ z) = (x ◦ y) ` (x ◦ z).

For (3), we use (G4):

x ` (y a z) a x−1 = x ` y a x−1 a x a z a x−1 = (x ◦ y) a (x a z a x−1)

= (x ◦ y) a (x ` z a x−1) = (x ◦ y) a (x ◦ z).

For (4), we apply Lemma 4.7(1) twice:

x ◦ (y ◦ z) = (x ` y) ◦ z = ((x ◦ y) ` x) ◦ z = (x ◦ y) ◦ (x ◦ z)
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Corollary 5.2. Let G be a digroup, and let ◦ be defined by (13). Then (G, ◦, 1)
is a rack.

As before, we are interested in this situation when the digroup is a manifold.

Definition 5.3. A Lie digroup (G,`,a) is a smooth manifold G with the
structure of a digroup such that the digroup operations `,a: G × G → G and
the inversion (·)−1 : G→ G are smooth mappings.

The following is an immediate consequence of the definitions and of Theo-
rem 3.4.

Lemma 5.4. If (G,`,a) is a Lie digroup, then its induced rack is a Lie rack.
Thus the tangent space T1G has the structure of a Leibniz algebra.

Example 5.5. Let H be a Lie group, V an H -module, and set G = V ×H .
As in Example 4.2, define

(u,A) ` (v,B) = (Av,AB) (16)

(u,A) a (v,B) = (u,AB) (17)

for all u, v ∈ V , A,B ∈ H . Then (G,`,a) is a Lie digroup, which we call a linear
Lie digroup. The distinguished bar-unit is (0, 1). The inverse of (u,A) is (0, A−1).

Now we examine the induced rack structure of the linear Lie digroups.

Theorem 5.6. Let G = V ×H with H a Lie group and V an H -module. If
(G,`,a) is the linear Lie digroup structure defined by (16)-(17), then the induced
rack (G, ◦,1) is the linear Lie rack defined by (3). Conversely, every linear Lie
rack is induced from a linear Lie digroup.

Proof. This all follows from a calculation:

(u,A) ◦ (v,B) = (u,A) ` (v,B) a (0, A−1) = (Av,ABA−1)

for all u, v ∈ V , A,B ∈ H .

Finally, we obtain Lie’s third theorem for split Leibniz algebras.

Corollary 5.7. Let g be a split Leibniz algebra. Then there exists a linear Lie
digroup G with tangent Leibniz algebra isomorphic to g.

Proof. By Theorem 3.5, there exists a linear Lie rack G with tangent algebra
isomorphic to g . By Theorem 5.6, G has a linear Lie digroup structure that
induces the rack structure.
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6. Conclusion

Of course, not every Leibniz algebra splits, because not every h-module epimor-
phism g → h → 0 splits. A class of nonsplit Leibniz algebras frequently mentioned
in the literature [11] can be described as follows: let (g, [·, ·]) be a Lie algebra, and
let D ∈ Der(g) satisfy D2 = 0. Define a new bracket by [X, Y ]D := [X,DY ] for
all X,Y ∈ g . Then (g, [·, ·]D) is a Leibniz algebra. In general, g does not split over
any ideal lying between S = 〈[X,DX] : X ∈ g〉 and ker(ad) = {Y : [X,DY ] = 0} .

Thus the general coquecigrue problem remains open. Digroups provide a
partial solution, and indicate that the correct notion of coquecigrue for an arbitrary
Leibniz algebra should include the notion of digroup as a special case. It is also
reasonable to conjecture that whatever the coquecigrue turns out to be, it should
induce its corresponding Leibniz algebra via an associated Lie rack.
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